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empirical large-signal HEMT model. The principal intrinsic elements,
Cgss Cgan gm, and gq., are represented as functions of the gate and
drain bias voltages.

We characterized an AlGaAs/GaAs HEMT with a gate 0.3 pm
long and 100 pm wide with our large-signal model. We included the
model in a commercially available circuit simulator as a user-defined
element and designed a 30/60-GHz frequency doubler operating at
Vgs = —0.55 V and Vy; = 2.0 V. The fabricated doubler had a
conversion loss of 5 dB with a 30-GHz 0-dBm input signal. The
experimental data agreed well with the calculations.
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Efficient Method for Scattering from a
Homogeneous, Circular, Cylindrical Shell
with an Inhomogeneous Angular-Region

S. Jegannathan

Abstract— The two-dimensional (2-D) scalar problem of a circular,
dielectric, cylindrical shell exposed to transverse magnetic (TM) inci-
dent field is considered. The shell is considered to be homogeneous
everywhere, except in a narrow angular-region where it is allowed
to be inhomogeneous. The problem is formulated using the moment
methed (MM). It is shown that the resulting system of MM equations
could be very efficiently solved employing a new theory of diagonally-
perturbed circulant matrices. The method presented here could be applied
for thin shells as well as shells which are “not-so-thin.” Results of
computer simulations are also provided verifying the validity of the
method proposed.

1. INTRODUCTION

The scattering behavior of various dielectric bodies may be ana-
lyzed employing the moment method (MM) [1]. The main limitation
of the MM is that it requires the solution of a large, nonsparse system
of linear equations. The method demands significant computing
resources when implemented directly. It is therefore important to
recognize and use any structure present in the coefficient matrix.

In the present work, we consider scattering from a circular, dielec-
tric, cylindrical shell. The shell is considered to be homogeneous
everywhere, except in a narrow angular-region where it may be
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inhomogeneous. We show that the resulting system of MM equations
could be efficiently solved employing the new theory of diagonally-
perturbed circulant matrices [5] developed in the following sections.
An alternative to the approach presented here is to employ the
combination of the conjugate-gradient method (CGM) and the FFT
[2]-[4]. For the scatterer under consideration, we show that the
method presented here works faster than the CGM-FFT technique.

II. CIRCULANTS
Consider the NV x N circulant matrix IIy given by

Cg CN—1 CN-2 =+ (1
C1 Co CN—1 ~** (2

11, = C2 C1 Co 03|, (1)
CN—-1 CN-2 CN-3 --- Cp

The elements of the above matrix may be complex; it is assumed
that they satisfy

Cr = CN—; for r=12,.--,N -1 2)

Let IT;, Iy, - - -, TI;, be matrices such that they are the same as
matrix Ilo but with its mih, (ml, mg)th, . ',(TTLl, ma,- -, mL)th,
respectively, main diagonal element(s) perturbed by (1), (61, 62), -,
(61,80, ++,8L), respectively, where m,, i = 1,2,-.., L are integers
such that 1 < mi.ma,---,my < N, 61,82.---,8; are arbitrary
complex constants; 1 < L < N andm, # m, when: # j. Assuming
the appropriate inverses exist, we now have

I =1 — v aviy  for n=1,2,--.L (3)
where
. 6
b= —
1+6nc,_, ®

In the above equations v,,—; and ¢,_; are the m:" column, and the
mt" diagonal element, respectively, of TI1,. Equation (3) can be

derived as follows: For n = 1,2.---, L, we have

I, =II,1 + diag(0 b 0 --- 0) )

where in the diagonal matrix of the above equation. é, occupies the

appropriate " diagonal position. Equation (5) may be written as

o, =II, ; +u,u’ (6)

where u,, is the V x 1 column vector, all the elements of whi(ih

are zero except the mY element: the m%* element of u, equals 2.

Now, we have from the matrix inversion lemma [6]

-1 Typ—1
II, "y unu, I,

= T, @
Evidently
I, = Véava_s. ®)
From (2) and (5), for n = 1,2,.--, L we have
(1) =1t )
Transposing both sides of (8), and substituting (9), we get
ui I = VB (ve)” (10)
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from which we have

ol u, = bac . (11)
Substituting (8), (10), and (11) in (7), we obtain
T
m;! =1t - VetV (12)

14 6ncl,_;

Substituting (4) in (12), we obtain (3). From (3) it follows that for
an integer L satisfying 1 < L < N, we have

L
M =T = > 6veoavi g, (13)
r=1

Let us now consider solving a system of equations of the form
II;x = y. Using (13) we may write

L
x = H;ly - ZéTvrﬂlvzﬂ_ly.

r=1

14

Let us for the present assume that IT; ! is available in the decomposed
form of (13); that is, TI; ", the &, and v are all known. If this is the
case, the following algorithm may be employed to evaluate x (14)
efficiently.

A. Algorithm A
Since I, is a circulant matrix, so also is II; ' Hence

1) Evaluate I1;'y. Call this result x'.

For r = 1,2,---, L, repeat steps ii) —iv).

2) Evaluate Yf_ly The result is a scalar.

3) Multiply 6, with the result of the above step.

4) Multiply the result of the previous step and the column vector
v,—1 and subtract the result from x'. Replace x’ with this
result.

The result x' after L iterations is the required solution x as seen
from (14). The computational merits of Algorithm A as well as the
following Algorithm B, which is to be used for decomposing IIZ1
in the required form, are discussed in §IV. ‘

Let us consider (14). The vectors vo,vy,:--,VvE-1 are the
mi®,mi, .. mi* columns of ITy*, TN !, - - -, TIT ! | respectively.

The constants &,, are as defined in (4), we see that these constants
depend on ¢}, _;, besides on the known &,. The quantity c,_;, as
defined earlier, is the m %" diagonal element of I, 1 ; that is, c},_, is
the mi? element of v,,._q. In view of this, we need to calculate I, !
and the mi", mit --- mi* columns of I II;', ... II;',,
respectively, to decompose II;'; a full description of the latter
matrices will only be redundant. Exploiting this, we may propose the

following efficient algorithm to decompose TI7*.

B. Algorithm B

1) Invert the circulant matrix Ilo.

2) The m{" column of TI;" is vo. ¢ is the m}" element of vo.
61 may be evaluated now from (4).
If L = 1, we have already got the required decomposition.
However, if L is greater than unity, the following steps must
be executed:

3) Forr = 2,3,---, L repeat.

1) Setv,, = mf,h

2) Fori =1,2,---

column of II;!.
,7 — 1 repeat

a) Evaluate 8’ = b, (v,‘l)mT where (Vz—l)mr denotes the

mi* element of v,_.

T

Fig. 1. A shell is divided into N cells.

b)  Set(vr-1), = (Vr—1);—8'(Viz1); where (.), denotes
the j** element of the column vector; do this for all the
values of j, ie., j = 1,2,---, N,

The above algorithms can be used even when all the NV diagonal
elements of the circulant are perturbed; however, computational
advantages are derived only when the number of perturbed elements
L is much smaller than NV, as shown in §1V.

III. SCATTERING FROM A CIRCULAR, CYLINDRICAL SHELL

Fig. 1 depicts the cross section of a shell divided into cells as
required by the MM [1]. Implementation of the MM yields a system
of linear equations of the form

(I+Kele=¢e" (15)
where I, K, ¢ are all N x N matrices, e and e* are N x 1 column
vectors. In the above equation, I is the unity matrix, ¢ is a diagonal
matrix given by é — I where the nth diagonal element of € is the same
as the dielectric constant of the cell n, K is a matrix whose element
on the m** row and n*" column depends upon the distance between
the centres of cells m and n; the nt" element of e and e* are the same
as the the total and incident field intensities at the centre of cell n.

Once (15) is solved for ee, the scattered field can be determined at
any point in space by means of a simple calculation as described in
[1]. It is evident that the task reduces to solving a circulant system, if
the shell is homogeneous; if it is inhomogeneous, we have to deal with
a diagonally-perturbed circulant. Moreover, when the cell division is
performed in a way such that the centres of the cells are angularly-
equispaced, the condition specified by (2) is evidently met. In view of
this, Algorithms A and B could be straightaway applied to solve (15).

Even if the shell is “not-so-thin” requiring a few radial divisions
as well, Algorithms A and B could be applied to solve the resultant
MM system; in that case, we would be dealing with a block-circulant
matrix [S] instead of a circulant.

1V. COMPUTATIONAL COMPLEXITY

The computational complexity of Algorithms A and B can be
determined as follows: step 1) of Algorithm A requires the evaluation
of N-point FFT thrice [7]. Besides, it also requires N arithmetic
operations to be performed. Each execution of steps 2)-4) requires
(2N — 1) + (1) + (2N) = 4N arithmetic operations. Hence, Al-
gorithm A requires on the whole N (4L + 1) arithmetic operations

and the evaluation of IV-point FFT thrice. Similarly, it can be shown

. . (L2 —-L+2) . . .
that Algorithm B requires roughly ~—————= N arithmetic operations,

besides the execution of two /N-point FFT’s. These figures would be
somewhat different, if intermediate results are stored and reused. In
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Fig. 2. Distant scattering pattern of a homogeneous cylindrical shell with
an mhomogeneous patch —— Method presented here * * * * Caussian
elimination method dielectric constant = 6.0 + j when ¢ = — 19z 10 {555 =

3.0 elsewhere; mean radius = 1.0 X, thickness = 0.05 X number 0%805113 =128.

any case, when IV is large and L << N, the overall computational
effort is proportional to N log V.

In comparison, the CGM-FFT method is O (N log N ) the Gauss-
ian elimination method is O(N®). Thus, when N is large and
L << N, the method presented here is significantly faster.

V. NUMERICAL RESULTS

The MM equations of the shell described in Fig. 2 were solved
employing the Gaussian elimination method, the CGM-FFT method
and the method presented here. The execution time for the three
methods were 77550 msec. 9110 msec, and 561 msec, respectively.
This includes the time for calculating the coefficients of the matrix.
These results were obtained with Fortran 77 compiler on Toshiba
T4400C notebook. Fig. 2 depicts the distant scattering pattern calcu-
lated from the solution of the MM equations. The exact agreement
obtained verifies the correctness of the method proposed.

As a second example, a shell of mean radius 4.0 and of the same
thickness as the previous example was considered. The dielectric
constant of the shell was taken to be 3.0 except in the region
-5 < ¢ < IZ where it was taken to be 6.0 + j; the angle ¢
is as indicated in Fig. 1. The size of the MM matrix was 512 x 512;
in the previous example it was 128 x 128, In view of the large size
of the matrix, only the CGM-FFT method and the method presented
here were implemented. The execution time for the two methods were
70530 msec and 3350 msec, respectively. Thus, in both the cases,
the method presented here was considerably faster.

VI. CONCLUSION

In this paper, we have presented a method for solving the MM
equations of a circular, dielectric, cylindrical shell efficientdy. Al-
though we focused our attention on a homogeneous shell with a
narrow inhomogencous angular-region, the theory derived here does
not assume that the perturbations should be contiguous; the method
works even when there are more than one inhomogeneous patch. As
the shell is a useful model for scatterers such as co-axial cables,
volcanic pipes, blood vessels and arteries, efficient determination of
the scattering pattern will be of use in applications such as crack
detection.
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Conductor-Loss Limited Stripline Resonator and Filters

Chen-Yu Chi and Gabriel M. Rebeiz

Abstract—We report on stripline resonators on thin dielectric mem-
branes that show dispersion-free, conductor-loss limited performance
at 13.5 GHz, 27.3 GHz, and 39.6 GHz. The unloaded-Q (Q.) of the
resonators increases as v/f with frequency and is measured to be 386 at
27 GHz. The measured results agree well with a new conformal mapping
analysis. The stripline resonators are used in a micromachined state-
of-the-art planar interdigitated bandpass filter at K-band frequencies.
Excellent agreement has been achieved between the microwave model
at 850 MHz and the 20 GHz filter, The micromachined filter exhibits a
passband return loss better than —15 dB and a conductor-loss limited
1.7 dB port-to-port insertion loss (including input/output CPW line loss)
at 20.3 GHz.

1. INTRODUCTION

Silicon micromachined technology has been used recently to build
low-loss lumped elements, K-band and W-band filters, resonators
and couplers [1]-[3]. Micromachined components, suspended on thin
dielectric membranes, do not suffer from dielectric and dispersion
loss up to terahertz frequencies [4]. Also. with the advantage of the
monolithic microwave/millimeter-wave integrated cirucits (MMIC)
fabrication process, batch fabricated micromachined components can
have 1dentical responses for use in large volume satellite receiver
systems and future personal communication systems at microwave
and millimeter-wave frequencies.

In this paper, we report on the performance of stripline and
microstrip resonators on thin dielectric membranes at microwave and
millimeter-wave frequencies. The stripline results are shown to be
conductor-loss limited but the microstrip results show a small free-
space radiation loss component at 13 GHz and this radiation loss
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