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empirical large-signal HEMT model. The principal intrinsic elements,

C,,. C9~.g~,, and gds, are represented as functions of the gate and

drain bias voltages.

We characterized an AIGaAs/GaAs HEMT with a gate 0.3 /lm

long and 100 ~m wide with our large-signal model. We included the

model in a commercially available circuit simulator as a user-defined

element and designed a 30/60-GHz frequency doubler operating at

1’:, = –0.55 ~’ and ~d, = 2.0 V. The fabricated doubler had a

conversion loss of 5 dB with a 30-GHz O-dBm input signal. The

experimental data agreed well with the calculations.
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Efficient Method for Scattering from a

Homogeneous, Circular, Cylindrical Shell

with an Inhomogeneous Angular-Region

S. Jegannathan

Abstract— The two-dimensional (2-D) scalar problem of a circular,
dielectric, cylindrical shell exposed to transverse magnetic (TM) inci-

dent field is considered. The shell is considered to be homogeneous
everywhere, except in a narrow angular-region where it is allowed
to be inhomogeneous. The problem is formulated rising the moment
method (MM). It is shown that the resulting system of MM equations
conlrt be very efficiently solved employing a new theory of diagonally-
pertm-bed circulant matrices. The method presented here could be applied
for thin shells as weIl as shells which are “not.so.thin.” Results of
computer simulations are also provided verifying the validity of the
method proposed.

I. INTRODUCTION

The scattering behavior of various dielectric bodies may be ana-

lyzed employing the moment method (MM) [1]. The main limitation

of the MM is that it requires the solution of a large, nonsparse system

of linear equations. The method demands significant computing

resources when implemented directly. It is therefore important to

recognize and use any strocture present in the coefficient matrix.

In the present work, we consider scattering from a circular, dielec-

tric, cylindrical shell. The shell is considered to be homogeneous

everywhere, except in a narrow angular-region where it may be
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inhomogeneous. We show that the resulting system of MM equations

could be efficiently solved employing the new theory of diagonally-

perturbed circulant matrices [5] developed in the following sections.

An alternative to the approach presented here is to employ the

combination of the conjugate-gradient method (CGM) and the FFT

[2]–[4]. For the scatterer under consideration, we show that the

method presented here works faster than the CGM-FFT technique.

II. CIRCULANTS

Consider the N x N circulant matrix II. given by

‘O=[N.I:il

The elements of the above matrix may be complex; it is assumed

that they satisfy

Cr = ~iv–, for r=l,2, . . .. Jl -l. (2)

Let~l, 112, . . . . IIL be matrices such that they are the same as

matrix I& but with its m~h, (m,, rna)th, ~ .,(ml,m z,. . . ,m~)’h,

respectively, main diagonal element(s) perturbed by (Al ), (cl, 62 ),. . ..

(&,62,... , 6L ), respectively, where m,, i = 1,2, . . . . ~ are integers

such that 1 < ml,mz,. ,mL < .%T, 61,62, . . . ,15L are arbitrary

complex constants; 1 S L < N and m, # ml when z # J. Asstrrmng

the appropriate inverses exist, we now have

rI; l = rr;:l – 6:V. –lV; –1 for rr=l,2,. ... L (3)

where

in = 6“
l+6nc~_1”

(4)

In the above equations v,, _ ~ and c:_ ~ are the m~h column, and the

m ~h diagonal element, respectively, of II;!,. Equation (3) can be

derived as follows: For n = 1, 2 . . . . . J5, we have

nn=KC.-l+diag(O ~~~ 6. 0 . O) (5)

where in the diagonrd matrix of the above equation, bn occupies the

appropriate rn~h diagonal position. Equation (5) may be wrttten as

II,, = rIn_l + Ur, u: (6)

where u. is the N x 1 column vector, all the elements of which

are zero except the m ~Lhelement: the m ~h element of Un equals ~#.

Now, we have from the matrix inversion lemma [6]

~–l _ ~–1 _ ~;llunu:n–l n—l
n.— n—l

1 + u:rI;:lun

Evidently

n;:lun = V&v.-,.

From (2) and (5), for n = 1,2, ..., L we have

(rI;:,)T = rI;:,.

Transposing both sides of (8), and substituting (9), we get

u:rI ;:l = l/%n(vn_, )’

(7)

(8)

(9)

(lo)
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from which we lhave

u:n;!lun = &c; _l. (11)

Substituting (8), (10), and (11) in (7), we obtain

(12)

Substituting (4) in (12), we obtain (3). From (3) it follows that for

an integer L satisfying 1 < L < N, we have

n;’ = n;’ - &_& (13)
,=1

Let us now comider solving a system of equations of the form

ll~x = y. Using (13) we may write

L
x= II;’y - ~isrr.,v’ yr—l . (14)

,=1

Let us for the present assume that 11~1 is available in the decomposed

form of (13); that is, 11~1, the $, and v are all known. If this is the

case, the following algorithm may be employed to evaluate x (14)

efficiently.

A. Algorithm A

Since IIo k a circulant matrix, so also is II; 1 Hence

1)

2)

3)

4)

Evaluate II ~ 1y. Call this result x’,

Forr=l,2,... , L, repeat steps ii) –iv).

Evaluate ~~!_ ~y The result is a scalar.

Multiply & with the result of the above step.

Multiply the result of the previous step and the column vector

v,_ ~ and subtract the result from x;. Replace x’ with this

result.

The result x’ after L iterations is the required solution x as seen

from (14). The computational merits of Algorithm A as well as the

following Algorithm B, which is to be used for decomposing II; 1

in the required form, are discussed in $IV,
Let us consider (14). The vectors V., VI, 0... vL _ 1 are the
th

ml ,m~h, ..., m ~h COhSIIUIS of II; 1, II; 1, ..., 11~1 ~, respectively.

The constants ~~, axe as defined in (4), we see that these constants

depend on c: – ~, besides on the known 6.. The quantity c~_l, as

defined earlier, is the m~h diagonal element of 11~11; that is, c&_l is

the m~h element of V. – 1, In view of this, we need to calculate II; 1

and the m~h, th
rn37.””,m;h columns of 11~1,11~1, . . . . 11~~1,

respectively, to decompose II; 1; a full description of the latter

matrices will only be redundant. Exploiting this, we may propose the

following efficient algorithm to decompose 11~1.

B. Algorithm B

1)

2)

3)

1)

2)

Invert the circulant matrix 110.

The m~h column of ~~’ is vo, CL is the m~h element of vo.

& may be evaluated now from (4).

If L = 1, we have already got the required decomposition.

However, if L is greater than unity, the following steps must

be executedl:
For ‘r = 2,3, . . . . L repeat,

Set v,_l = m$h column of II; l.

Fori=l,2,...,l re peatat

a) Evaluate 6’ = $, (v, _l )~r where (v,–l )mr denotes the

m ~h element of v, – 1.
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Fig. 1. A shell is divided into N cells.

b) Set (V,-l)J = (v,.. -I)j –b’(v,-l)j where (.)7 denotes

the .jth element of the column vecto~ do this for all the

values of j, i.e., j = 1,2, . . ..N.

The above algorithms can be used even when all the h“ diagonal

elements of the circulant are perturbed; however, computational

advantages are derived only when the number of perturbed elements

L is much smaller than N, as shown in ~IV.

III. SCATTERING FROM A CIttCULAR, CYLINDRICAL SHELL

Fig. 1 depicts the cross section of a shell divided into cells as

required by the MM [1]. Implementation of the MM yields a system

of linear equations of the form

(1+ Kc)e = ei (15)

where I, K, ~ are all N x N matrices, e and e% are N x 1 column

vectors. In the above equation, I is the unity matrix, c is a diagonal

matrix given by F– I where the nth’ diagonal element of ~ is the same

as the dielectric constant of the cell n, K is a matrix whose element

on the mth row and nth column depends upon the distance between

the centres of cells m and n; the nt’$ element of e and e* are the same

as the the total and incident field intensities at the centre of cell n.

Once (15) is solved for ee, the scattered field can be determined at

any point in space by means of a simple calculation as described in

[1]. It is evident that the task reduces to solving a circulant system, if

the shell is homogeneous; if it is inhomogeneous, we have to deal with

a diagonally-perturbed circulant. Moreover, when the cell division is

performed in a way such that the centres of the cells are angularly-

equispaced, the condition specified by (2) is evidently met. In view of

this, Algorithms A and B could be straightaway applied to solve (15).

Even if the shell is “not-so-thin’” requiring a few radial divisions

as well, Algorithms A and B coulcl be applied to solve the resultant

MM system; in that case, we WOUICIbe dealing with a block-circulant

matrix [5] instead of a circulant.

IV. COMPUTATIONAL COMPLEXITY

The computational complexity of Algorithms A and B can be

determined as follows: step 1) of Algorithm A requires the evaluation

of N-point FTT thrice [7]. Besides, it also requires N arithmetic

operations to be performed. Each execution of steps 2)-4) requires
(2N – 1) + (1) + (2iV) = 4N arithmetic operations. Hence, Al-

gorithm A requires on the whole N (4L + 1) arithmetic operations

and the evaluation of N-point ITT thrice. Similarly, it can be shown

‘L’ ‘L+z) N arithmetic operations,that Algorithm B requires roughly -—

besides the execution of two N-point I%T’s. These figures would be

somewhat different, if intermediate results are stored and reused. In
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ANGLE ,0 IN RADIANS

Fig. 2. Distant scattering pattern of a homogeneous cylindrical shell with
an mhornogeneous patch — Method presented here * * * * Gaussian
elimirratlon method dielectric constant = 6.0 + j when ~ = – ~ to ~; =
3.0 elsewhere; mean radius = 1.0 A, thickness= 0.05 A number of cells = 128.

any case, when N is large and L << ,Y, the overall computational

effotl is proportional to JV log N.

In comparison, the CGM-FFT method is O (N2 log N), the Gauss-

ian elimination method is O (JV3 ). Thus, when N is large and

L << .V, the method presented here is significantly faster.

V. NUMERICAL RESULTS

The MM equations of the shell described in Fig. 2 were solved

employing the Gaussian elimination method, the CGM-FFT method

and the method presented here. The execution time for the three

methods were 77550 msec, 9110 msec, and 561 msec, respectively.

This includes the time for calculating the coefficients of the matrix.

These results were obtained with Fortran 77 compiler on Toshiba

T4400C notebook. Fig. 2 depicts the distant scattering pattern calcu-

lated from the solution of the MM equations. The e~act agreement

obtained verifies the correctness of the method proposed.

As a second example, a shell of mean radius 4.0~ and of the same

thickness as the previous example was considered. The dielectric

constant of the shell was taken to be 3.0 except in the region
_&

l~R5d5 ~ where it was taken to be 6.0 + j; the angle ~

is as indicated in Fig. 1. The size of the MM matrix was 512 x 512;

in the prewous example it was 128 x 128, In view of the large size

of the matrix, only the CGM-FFT method and the method presented

here were implemented. The execution time for the two methods were

70530 msec and 3350 msec, respectively. Thus, in both the cases,

the method presented here was considerably faster.

VL CONCLUSION

In this paper, we have presented a method for solving the MM

equations of a cmcular, dielectric, cylindrical shell efficiently. Al-

though we focused our attention on a homogeneous shell with a

narrow inhomogeneous angular-region, the theory derived here does

not assume that the perturbations should be contiguous; the method

works even when there are more than one inhomogeneous patch. As

the shell is a useful model for scatterers such as co-axial cables,

volcanic pipes, blood vessels and arteries, efficient determination of

the scattering pattern will be of use in applications such as crack

detection.
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Conductor.Loss Limited Stripline Resonator and Filters

Chen-Yu Chi and Gabriel M. Rebeiz

Abstract— We report on stripline resonators on thin dielectric mem-
branes that show dispersion-free, conductor-loss limited performance
at 13.5 GHz, 27.3 GHz, and 39.6 GHz. The unloaded-Q (Q. ) of the
resonators increases as H with frequency and is measured to be 386 at
27 GHz. The measured results agree well with a new conformal mapping

analysis. The stripline resonators are used in a micromachined state-
of-the-art planar interdlgitated bandpass filter at K-band frequencies.

Excellent agreement has been achieved between the microwave model
at 850 MHz and the 20 GHz filter. The micromachined filter exhibits a

passband return loss better than – 15 dB and a conductor-loss limited
1.7 dB port-to-port insertion loss (including input/output CPW line loss)

at 20.3 GHz.

I. INTRODUCTION

Silicon micromachined technology has been used recently to build

low-loss lumped elements, K-band and W-band filters, resonators

and couplers [1 ]–[3]. Micromachined components, suspended on thin

dielectric membranes, do not suffer from dielectric and dispersion

loss up to terahertz frequencies [4]. Also, with the advantage of the

monolithic microwave/millimeter-wave integrated cirucits (MMIC)

fabrication process, batch fabricated micromachined components can

have identical responses for use in large volume satellite receiver

systems and future personal communication systems at microwave

and millimeter-wave frequencies.

In this paper, we report on the performance of stripline and

microstnp resonators on thin dielectric membranes at microwave and

millimeter-wave frequencies. The stripline results are shown to be

conductor-loss limited but the microstrip results show a small free-

space radiation loss component at 13 GHz and this radiation loss
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